
R A I S I N G Y O U R C Y B E R R E S I L I E N C E

Information
Gathering/

Enumeration

AWS Pen Testing
Methodology -
An Overview

W H I T E P A P E R

The main goal of this guide is to provide a structured approach to
black-box penetration testing for AWS, delivering a clear and
practical learning experience.

The content is broken down into phases, explained in the Methodology section, so you can follow
along step by step.

The focus is on real-world issues, especially user misconfiguration vulnerabilities, which are the most
common and impactful in practice.

The Tools section simplifies access, enabling quick retrieval of necessary resources.

The Certifications and Resources section is included to further explore.

Methodology

What to expect

Identify
Misconfigurations
or Weaknesses

Exploit for Initial
Access

Obtain IAM Roles
or Credentials

Privilege Escalation
or Lateral Movement

By: Shravan Sheri

WHITEPAPER

The Information Gathering phase in AWS black-box penetration testing focuses on external
reconnaissance to identify publicly exposed resources, misconfigurations, and vulnerabilities without
having direct access to the target environment. Below are the detailed steps for some interesting and
commonly targeted resources with useful options and flags to enhance testing efficiency

Information Gathering/Enumeration

1. Enumerating S3 Buckets
Objective: Discover publicly accessible S3 buckets and test for lax permissions or sensitive file
exposure.
Steps:
 Use s3scanner to identify open buckets and test access permissions.

 python3 s3scanner.py --bucket <bucket_name>

2. Searching for Exposed Git Logs
Objective: Identify exposed .git directories and analyze logs for sensitive information.
Steps:
 Use git-dumper.py to retrieve an exposed .git directory:

 ./git_dumper.py http://website.com/.git ~/website

Analyze the config and logs files for AWS credentials or API keys using the git command line, you can
learn more on how to do using this article.

3. Scanning Websites and APIs
Objective: Identify publicly exposed endpoints and vulnerabilities in web applications.
Steps:
 Use Amass or Sublist3r for subdomain enumeration.
 amass enum -d <target-domain>
 sublist3r -d <target-domain>

 Perform port scanning with Nmap to identify open services.

 nmap -Pn -p- <target-ip>

 Use a brute-forcing tool like Gobuster to search for directories and files.

 gobuster dir -u http://<target-domain> -w /path/to/wordlist.txt

4. Identifying Web Application Vulnerabilities
Objective: Exploit web vulnerabilities to gain access to AWS resources like EC2 metadata and SQS.
Steps:
 Test for SSRF vulnerabilities that query EC2 metadata:

 curl -X GET "http://<vulnerable-endpoint>/?url=http://169.254.169.254/latest/meta-data/"

The Analysis of unauthenticated API endpoints for sensitive information using Burp Suite is explained
below.

https://github.com/sa7mon/S3Scanner
https://github.com/arthaud/git-dumper
https://git-scm.com/downloads
https://medium.com/stolabs/git-exposed-how-to-identify-and-exploit-62df3c165c37
https://github.com/owasp-amass/amass
https://github.com/aboul3la/Sublist3r
https://nmap.org/
https://github.com/OJ/gobuster

WHITEPAPER

5. Endpoint Detection Tools for AWS Reconnaissance
Endpoint Detection tools streamline AWS black-box testing, saving time and ensuring accuracy in large
scopes. Tools like Shodan, and Censys quickly identify public resources, while httprobe pinpoint
misconfigurations and live services. These tools accelerate discovery, improve accuracy, and allow
testers to focus on analyzing critical findings, making the process faster and more efficient for complex
environments.

Shodan
Objective: Identify publicly exposed AWS resources, such as EC2 instances, RDS databases, and
ElasticSearch services by scanning IPs and domains.
Steps:
 Search for exposed AWS-hosted services using Shodan:

 "aws" OR "Amazon" site:shodan.io

 Refine your search query with specific service details:
ElasticSearch: product:ElasticSearch region:aws
S3 Buckets: "s3.amazonaws.com"
RDS Databases: port:3306 "aws"

 Analyze the discovered services for misconfigurations or weaknesses explained in the Identify
 Misconfiguration or Weakness phase.

Censys
Objective: Enumerate AWS-hosted services and assets through IP and TLS metadata analysis.
Steps:
 Use Censys to search for exposed AWS assets:

 services.metadata.product:"Amazon AWS"

 Filter results for specific services:
Example for S3: "s3.amazonaws.com" {region can be inferred from the endpoint patterns like
s3.us-east-1.amazonaws.com}
Example for Elastic Load Balancers: "*.elb.amazonaws.com"

 Investigate for publicly accessible configurations or mismanaged certificates
Check service for metadata information in Censys for:

Exposed endpoints s3.amazonaws.com or *.elb.amazonaws.com.
TLS/SSL certificates for validity, expiration, or misconfiguration.

Perform further manual validation of these endpoints using tools like curl or AWS CLI to verify
permissions and accessibility.

Httprobe
Objective: Probe live subdomains for AWS-hosted services or endpoints.
Steps:
 Use a subdomain enumeration tool (e.g., Amass) to generate a list of potential targets.
 Pipe the results into httprobe to test for live endpoints:

 cat subdomains.txt | httprobe

 Analyze live domains to identify AWS-hosted services such as S3, Lambda, and API Gateway.

https://www.shodan.io/
https://censys.com/
https://github.com/tomnomnom/httprobe

WHITEPAPER

After information gathering, identifying misconfigurations and weaknesses in AWS is the next step in a
black box penetration test. Misconfigurations are unintended settings or permissions that deviate from
security best practices, leading to vulnerabilities. Weaknesses, on the other hand, are flaws that arise
from improper implementation or lack of security controls.

Why is it important?
Misconfigurations are among the most common causes of cloud breaches.
AWS environments often expose resources due to overly permissive policies, poor Identity and
Access Management (IAM) configurations, or lack of monitoring.
Testing for these issues helps uncover potential entry points, lateral movement paths, and privilege
escalation opportunities.

The transition from Information Gathering to this phase involves leveraging the collected data to directly
test for exploitable flaws. The following are a few important ways you can identify weaknesses.

Identify Misconfigurations or Weaknesses

1. Publicly Accessible S3 Buckets
Why It Matters: S3 buckets with public read/write permissions can lead to data leaks or unauthorized
tampering.
How to Identify Weaknesses:
 Test Read Permissions: Use bucket names discovered during information gathering to check for
 public read access:

 aws s3 ls s3://<bucket-name> --no-sign-request

 Success: Indicates public read access.
 Test Write Permissions: Attempt to upload a file to the bucket:

 echo "Shravan Kumar Sheri owns this file" > test.txt
 aws s3 cp test.txt s3://<bucket-name>/test-upload.txt --no-sign-request

 Success: Confirms public write access, enabling tampering or malicious uploads.

Note: Cloudbreach has developed a script to automate these tests.

2. Exposed Identity and Access Management (IAM) Roles via EC2 Metadata
Why It Matters: Exposed EC2 metadata can leak temporary IAM credentials, enabling privilege
escalation or lateral movement.
How to Identify Weaknesses:
 Validate Retrieved Credentials: Use IAM credentials retrieved during information gathering (via SSRF
 or other methods) to test for permissions:

 aws sts get-caller-identity --profile=hackedBySSK // retrieve username from this

 Test Accessible Resources: Leverage the credentials to access AWS services:

 aws s3 ls
 aws ec2 describe-instances

Note: Cloudbreach developed a script to automate testing userdata attribute across multiple instances.

https://github.com/cloudbreach/CloudBreach_AWSScripts/blob/master/s3BucketVersionDumper.sh
https://github.com/cloudbreach/CloudBreach_AWSScripts/blob/master/EC2userDataDumper.sh

WHITEPAPER

3. Open Security Groups
Why It Matters: Overly permissive security groups expose sensitive services, enabling unauthorized
access to critical infrastructure (we can also combine information found from SSH keys found during
directory brute-forcing or other exposed sensitive file).
How to Identify Weaknesses:
 Verify Open Ports: Use open ports identified during information gathering to confirm accessible
services:

 nmap -Pn -p22,3389 <public-ip>

Test Accessible Services:
 SSH

 ssh <public-ip>

 RDP

 rdesktop <public-ip>

Success: Confirms that security group rules allow unrestricted access.

4. CloudFront Misconfigurations
Why It Matters: Misconfigured CloudFront distributions can expose backend services (e.g., S3 buckets
or APIs), bypassing access controls.
How to Identify Weaknesses:
 Analyze CloudFront Endpoints: Test known CloudFront endpoints for unrestricted access to origins:

 curl -X GET https://<cloudfront-endpoint>

Inspect Backend Responses:
 Direct access to S3 buckets

If the CloudFront distribution is improperly configured then a curl requests to the URL might be
forwarded directly to s3 Origin. For example, if below curl method returns a file stored in the s3
bucket, it indicates that the origin is exposed and accessible through CloudFront.

 curl https://<cloudfront-endpoint>/file.txt

 Exposed API responses or restricted content
CloudFront API response might reveal information about the origin server, such as S3 URLS,
through HTTP headers or error messages.
Request

 curl -I https://<cloudfront-endpoint>

Response

 x-amz-id-2
 x-amz-request-id

https://github.com/SummitRoute/aws_exposable_resources
https://curl.se/download.html

WHITEPAPER

Error Messages Indicating Misconfigurations
CloudFront misconfigurations can reveal sensitive backend details through error messages in
response headers and bodies. Use curl -I https://<cloudfront-endpoint> to inspect responses
and identify potential leaks. Following are some examples

 API Gateway Misconfiguration (502 Bad Gateway):
HTTP/1.1 502 Bad Gateway
X-Cache: Error from cloudfront

 // Suggests backend connectivity issues or incorrect routing.
Leaked S3 Bucket Name (Response Body): Exposes bucket name, aiding targeted attacks.
<Error>

 <Code>AccessDenied</Code>
 <Message>Access Denied</Message>
 <HostId>example-bucket.s3.amazonaws.com</HostId>
 </Error>

Common CloudFront Error Codes:
403 Forbidden: Misconfigured S3 bucket permissions.
404 Not Found: Incorrect object path.
502 Bad Gateway: Backend API issues.

5. Lambda Function Misconfigurations
Why It Matters: Misconfigured Lambda functions can expose sensitive data (e.g., environment variables)
or allow unauthorized actions.
How to Identify Weaknesses
 Probe API Endpoints: Test Lambda function endpoints identified during information gathering for
 sensitive information or execution issues:

 curl -X GET https://<lambda-endpoint>

 Analyze Responses:
Environment variables or credentials in error messages.
Signs of misconfigurations like verbose stack traces or execution errors.

Note: Lambda endpoints often follow a standardized syntax, similar to S3 buckets. By gathering enough
information, you can construct these endpoints.

Example: If you know the AWS region and account ID, a Lambda endpoint typically looks like:

https://<lambda-function-name>.lambda.<region>.amazonaws.com/<DirName>

For instance, if the Lambda function name is my-function, the AWS region is us-east-1, and the stage is
prod, the endpoint might be:

https://my-function.lambda.us-east-1.amazonaws.com/prod

WHITEPAPER

This phase focuses on leveraging misconfigurations or weaknesses to gain access or establish a
foothold in the target AWS environment. This phase combines techniques to exploit public resources,
retrieve IAM roles or credentials, and escalate privileges, building on findings from the information
gathering and identification phases.

Exploitation for Initial Access

1. Exploiting Publicly Accessible S3 Buckets
Objective: Leverage public read/write permissions to access sensitive files or tamper with data.
Steps
 Download sensitive files:

 curl -X GET https://<bucket-name>.s3.amazonaws.com/<file-name>

 Inject malicious files:

 curl -X PUT -T malicious.html https://<bucket-name>.s3.amazonaws.com/malicious.html

Note: This technique can achieve a full Remote Code Execution (RCE) on a company during its
application security testing.

2. Exploiting API Misconfigurations
Objective: Test misconfigured AWS API Gateway endpoints for unauthenticated access or overly
permissive Cross-Origin Resource Sharing (CORS) settings using Burp Suite.
Steps
 Scenario 1: Access Unauthenticated Endpoints

Open Burp Suite and configure the target endpoint in the Repeater tab.
Set the HTTP method to POST and enter the AWS API Gateway endpoint:

 https://<api-id>.execute-api.<region>.amazonaws.com/<stage>/<resource>
In the Request Body, add a sample JSON payload:
{

 "action": "create",
 "data": "test"
 }

Send the request and inspect the response for any signs of successful data processing or
creation.

 Scenario 2: Test for Overly Permissive CORS Policies
Open Burp Suite and configure the target endpoint in the Repeater tab.
Set the HTTP method to OPTIONS and enter the AWS API Gateway endpoint.
Add the following header to simulate a malicious origin:
Key: Origin

 Value: evil.com
 Send the request and inspect the response headers.

Note: If the response includes Access-Control-Allow-Origin: * or evil.com, it indicates overly permissive
CORS settings and If the API processes the request without authentication, it indicates a
misconfiguration.

How It Helps
Misconfigured API Gateway: Identifies endpoints that allow sensitive operations like creating or
updating data without authentication.
CORS Policy Exploitation: Confirms if unauthorized cross-origin POST requests can interact with the
API, enabling attackers to exfiltrate or manipulate data.

https://evil.com/

WHITEPAPER

3. Obtaining IAM Roles or Credentials
Objective: Leverage exposed AWS resources or misconfigurations to obtain IAM roles or credentials.
Steps
 Search for credentials in public repositories:

 truffleHog https://github.com/<repository-url>

 Retrieve public files from S3:

 aws s3 cp s3://<bucket-name>/config.env ./

 Search for access keys:

 grep -E 'AKIA[0-9A-Z]{16}' config.env

 Probe API Gateway endpoints invoking Lambda functions:

 curl -X GET https://<api-endpoint>

With valid IAM credentials obtained during the previous phase, the process shifts into a hybrid stage,
blending black-box and white-box techniques. These credentials allow direct interaction with AWS APIs
and services, enabling deeper exploration of the environment while maintaining an attacker’s
perspective.

Why This Phase is Critical
Enhanced Visibility: IAM credentials provide access to AWS resources, including details unavailable
during the initial information gathering phase.
Privilege Escalation: Identifying misconfigurations or unused permissions may reveal opportunities
for gaining higher privileges.
Lateral Movement: Mapping additional IAM users, roles, or resources enables attackers to move
within the AWS environment.
Stealth: Understanding CloudTrail and logging configurations helps minimize detection risks during
further actions.

Privilege Escalation/ Lateral Movement

1. Verify IAM Credentials
Why It Matters: Validating credentials ensures they are functional and provides insights into the
associated identity (e.g., account, user, or role).
Steps
 Verify credentials:

 aws sts get-caller-identity

How It Helps:
Identifies the account ID for targeting further resources.
Reveals whether the credentials are associated with a user or role, guiding enumeration efforts.
Confirms that the obtained credentials are functional.

WHITEPAPER

2. Enumerate IAM Permissions
Why It Matters: Understanding the scope of permissions assigned to the IAM credentials reveals the
potential for privilege escalation and resource access.
Steps
 List attached policies:

 aws iam list-attached-user-policies --user-name <user-name>

 Simulate policy permissions:

 aws iam simulate-custom-policy --policy-input-list file://policy.json --action-names s3:ListBucket

 Enumerate effective permissions:

 aws iam list-user-policies --user-name <user-name>

How It Helps
Determines if the credentials have overly permissive privileges.
Guides targeted exploitation efforts (e.g., accessing S3 buckets, escalating roles).
The primary objective of this enumeration is to assess current permissions and explore potential
avenues for leveraging them to achieve lateral or vertical privilege escalation.

3. Enumerate S3 Buckets
Why It Matters: S3 buckets often store sensitive data, including configuration files, logs, and secrets that
could reveal additional attack vectors.
Steps
 List accessible buckets:

 aws s3 ls

 Check permissions:

 aws s3api get-bucket-acl --bucket <bucket-name>

 Access bucket content:

 aws s3 cp s3://<bucket-name>/<file-name> ./

How It Helps
Uncovers stored credentials, secrets, and sensitive files.
Exploits overly permissive bucket policies for further access.

4. Enumerate EC2 Instances
Why It Matters: Identifying EC2 instances helps map compute resources, discover their configurations,
and potentially identify exposed services.
Steps
 List running instances:

 aws ec2 describe-instances

 Analyze security groups:

 aws ec2 describe-security-groups

 Identify public IPs:

 aws ec2 describe-instances --query 'Reservations[*].Instances[*].PublicIpAddress'

WHITEPAPER

How It Helps:
Identifies targets for further exploitation (e.g., metadata service).
Reveals potential misconfigurations in security groups.

5. Enumerate IAM Roles
Why It Matters: Discovering other IAM roles can reveal opportunities for privilege escalation and lateral
movement.
Steps
 List all roles:

 aws iam list-roles

 Inspect role permissions:

 aws iam get-role --role-name <role-name>

6. Enumerate CloudTrail
Why It Matters: Understanding logging configurations help avoid detection and identify potential blind
spots in monitoring.
Steps
 List CloudTrails:

 aws cloudtrail describe-trails

 Check logging status:

 aws cloudtrail get-trail-status --name <trail-name>

How It Helps
Identifies whether actions are being logged.
Helps plan stealthier exploitation strategies.

7. Enumerate Additional Services
Why It Matters: AWS services beyond the primary ones (S3, EC2, IAM) can expose critical resources or
misconfigurations.
Services

RDS: Databases may expose sensitive information if misconfigured.
Lambda: Environment variables may store secrets or tokens.
SNS/SQS: Can expose notifications, tasks, or disrupt workflows.

Steps
 RDS

 aws rds describe-db-instances

 Lambda

 aws lambda list-functions

WHITEPAPER

Tools Utilized

NAME LINK USAGE

aws cli

https://github.com/sa7mon/S3Scanner

https://nmap.org/

https://github.com/arthaud/git-dumper

https://github.com/owasp-amass/amass

https://github.com/aboul3la/Sublist3r

https://curl.se/download.html

https://github.com/tomnomnom/httprobe

https://www.shodan.io/

https://censys.com/

https://github.com/OJ/gobuster

https://github.com/trufflesecurity/trufflehog

A tool to find open S3 buckets in AWS.

A tool to perform network scanning.

A tool to find exposed git repositories.

A powerful tool for subdomain enumeration
and mapping external assets.

A fast and lightweight tool for enumerating
subdomains using multiple search engines.

A command-line tool for transferring data to
and from a server, often used for interacting
with web endpoints.

A tool to quickly probe a list of URLs or
domains for live HTTP and HTTPS
endpoints.

A search engine for identifying publicly
accessible devices and services, including
AWS resources, via IPs and domains.

A search engine for discovering internet-
connected devices and services through IP
and TLS metadata analysis.

A directory and DNS brute-forcing tool used
to discover hidden files, directories, and
subdomains on web servers.

A tool for detecting and verifying secrets such
as API keys, credentials, and tokens in
source code repositories, filesystems, and
cloud storage like S3 and GCS.

S3Scanner

Nmap

gitdumper

amass

sublist3r

cURL

httprobe

shodan

censys

gobuster

trufflehog

The AWS Command Line Interface (AWS
CLI) is an open source tool that enables you
to interact with AWS services.

https//docs.aws.amazon.com/cli/latest/userguid
e/getting-started-install.html#cliv2-linux-install

Certifications

NAME DESCRIPTION

AWS Red Team Apprentice
(ARTA)

AWS Red Team Expert

Offensive AWS Security
 Professional

The ARTA course by hacktricks, it teaches AWS security with black-box and white-box
methods, service exploitation, and stealth techniques through videos and labs.

The ARTE (Next Step to ARTA) course offers comprehensive AWS security training,
covering basics to advanced services, white-box and black-box methodologies,
detection bypass techniques, and hands-on labs to prepare for the htARTE certification.

The Breaching AWS course equips you to perform enumeration, identify
misconfigurations, exploit access gaps, simulate phishing, and conduct AWS
penetration tests and cloud security audits.

https://github.com/sa7mon/S3Scanner
https://nmap.org/
https://github.com/arthaud/git-dumper
https://github.com/owasp-amass/amass
https://github.com/aboul3la/Sublist3r
https://curl.se/download.html
https://github.com/tomnomnom/httprobe
https://www.shodan.io/
https://censys.com/
https://github.com/OJ/gobuster
https://github.com/trufflesecurity/trufflehog
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arte
https://cloudbreach.io/breachingaws/
https://cloudbreach.io/breachingaws/
https://cloudbreach.io/breachingaws/
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arta
https://training.hacktricks.xyz/courses/arta

About Security Innovation/
Bureau Veritas

Security Innovation is a leader in
software security, providing
comprehensive assessment solutions
to secure software from design to
deployment, across all environments,
including web, cloud, IoT, and mobile.
Leveraging decades of expertise and
as part of Bureau Veritas, a global
leader in Testing, Inspection, and
Certification, we seamlessly integrate
world-class security into development
processes, safeguarding the way
companies build and deliver products.

Security Innovation is a Bureau
Veritas company. Bureau Veritas (BV)
is a publicly listed company
specialized in testing, inspection and
certification. BV was founded in 1828,
has over 80,000 employees and is
active in 140 countries.

Conclusion

https://cloud.hacktricks.xyz/pentesting-cloud/aws-security

https://github.com/kh4sh3i/cloud-penetration-testing

https://github.com/CyberSecurityUP/Awesome-Cloud-PenTest

https://github.com/lutzenfried/OffensiveCloud/blob/main/AWS/AWS%20Pentest
%20Cloud%20-%20Resources.md

https://github.com/redskycyber/Cloud-Security/blob/main/AWS-Security-
Pentesting-Resources.md

Other Resources

Contact us today to start raising
your cyber resilience.

Interested?
sisales@securityinnovation.com

 +1 877 839 7598

securityinnovation.com

Securing AWS environments requires a thorough
understanding of common misconfigurations and
weaknesses that attackers exploit. This guide has outlined a
structured approach to AWS black-box penetration testing,
covering key phases such as information gathering,
identifying misconfigurations, exploiting vulnerabilities,
privilege escalation, and data exfiltration. By leveraging
publicly accessible tools and techniques, testers can
simulate real-world attack scenarios and help organizations
strengthen their cloud security posture.

However, it is important to recognize that every AWS
environment is unique, with configurations tailored to specific
organizational needs. As a result, the vulnerabilities and
misconfigurations found in one environment may not
necessarily exist in another. For further learning and hands-
on practice, refer to the provided certifications, references,
and lab resources to deepen your knowledge and stay
updated with evolving AWS security trends.

https://cloud.hacktricks.wiki/en/pentesting-cloud/aws-security/index.html
https://github.com/kh4sh3i/cloud-penetration-testing
https://github.com/CyberSecurityUP/Awesome-Cloud-PenTest
https://github.com/lutzenfried/OffensiveCloud/blob/main/AWS/AWS%20Pentest%20Cloud%20-%20Resources.md
https://github.com/lutzenfried/OffensiveCloud/blob/main/AWS/AWS%20Pentest%20Cloud%20-%20Resources.md
https://github.com/redskycyber/Cloud-Security/blob/main/AWS-Security-Pentesting-Resources.md
https://github.com/redskycyber/Cloud-Security/blob/main/AWS-Security-Pentesting-Resources.md
mailto:sales@securityinnovation.com
tel:+18778397598
https://www.securityinnovation.com/

